Modulation of phrenic motoneuron excitability by ATP: consequences for respiratory-related output in vitro.
نویسندگان
چکیده
On the basis of the high level of P2X receptor expression found in phrenic motoneurons (MN) in rats (Kanjhan et al., J Comp Neurol 407: 11-32, 1999) and potentiation of hypoglossal MN inspiratory activity by ATP (Funk et al., J Neurosci 17: 6325-6337, 1997), we tested the hypothesis that ATP receptor activation also modulates phrenic MN activity. This question was examined in rhythmically active brain stem-spinal cord preparations from neonatal rats by monitoring effects of ATP on the activity of spinal C4 nerve roots and phrenic MNs. ATP produced a rapid-onset, dose-dependent, suramin- and pyridoxal-phosphate-6-azophenyl-2',4'-disulphonic acid 4-sodium-sensitive increase in C4 root tonic discharge and a 22 +/- 7% potentiation of inspiratory burst amplitude. This was followed by a slower, 10 +/- 5% reduction in burst amplitude. ATPgammaS, the hydrolysis-resistant analog, evoked only the excitatory response. ATP induced inward currents (57 +/- 39 pA) and increased repetitive firing of phrenic MNs. These data, combined with persistence of ATP currents in TTX and immunolabeling for P2X2 receptors in Fluoro-Gold-labeled C4 MNs, implicate postsynaptic P2 receptors in the excitation. Inspiratory synaptic currents, however, were inhibited by ATP. This inhibition differed from that seen in root recordings; it did not follow an excitation, had a faster onset, and was induced by ATPgammaS. Thus ATP inhibited activity through at least two mechanisms: 1) a rapid P2 receptor-mediated inhibition and 2) a delayed P1 receptor-mediated inhibition associated with hydrolysis of ATP to adenosine. The complex effects of ATP on phrenic MNs highlight the importance of ATP as a modulator of central motor outflows.
منابع مشابه
Concurrent inhibition and excitation of phrenic motoneurons during inspiration: phase-specific control of excitability.
The movements that define behavior are controlled by motoneuron output, which depends on the excitability of motoneurons and the synaptic inputs they receive. Modulation of motoneuron excitability takes place over many time scales. To determine whether motoneuron excitability is specifically modulated during the active versus the quiescent phase of rhythmic behavior, we compared the input-outpu...
متن کاملThe ins and outs of deep breathing: mechanisms of respiratory motor plasticity.
THE RESPIRATORY CONTROL SYSTEM is not just reflexive; it is smart, it learns, and, in fact, it has a working memory. The respiratory system listens to and carefully remembers how previous respiratory stimuli affect breathing. Respiratory memory is laid down by regulating synaptic strength between respiratory neurons. Repeated hypoxic bouts trigger a form of respiratory memory that functions to ...
متن کاملBlockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.
Recent investigations have examined the influence of gap junctional communication on generation and modulation of respiratory rhythm and inspiratory motoneuron synchronization in vitro using transverse medullary slice and en bloc brain stem-spinal cord preparations obtained from neonatal (1-5 days postnatal) mice. Gap junction proteins, however, have been identified in both neurons and glia in ...
متن کاملAbnormal phrenic motoneuron activity and morphology in neonatal monoamine oxidase A-deficient transgenic mice: possible role of a serotonin excess.
In rodent neonates, the neurotransmitter serotonin (5-HT) modulates the activity of both the medullary respiratory rhythm generator and the cervical phrenic motoneurons. To determine whether 5-HT also contributes to the maturation of the respiratory network, experiments were conducted in vitro on the brainstem-spinal cord preparation of neonatal mice originating from the control strain (C3H) an...
متن کاملResponses to severe hypoxia of phrenic and recurrent laryngeal nerve activity in vagotomized cats.
We investigated changes in activities of phrenic nerve (PN) and the recurrent laryngeal nerve (RLN) during progressive hypoxia produced by administration of a mixture of 5% O2 in N2 and a mixture of 5% O2 in N2O in 8 vagotomized, paralyzed, and artificially ventilated cats anesthetized with halothane. During progressive hypoxia produced by administration of 5% O2 in N2, both PN and RLN activiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 92 5 شماره
صفحات -
تاریخ انتشار 2002